

I

Esteqlal Institute of Higher Education

Faculty of Computer Science

Year: Spring 2024

Research Title: password Authentication protocol

Author: Mohammad Milad Hassani

II

ABSTRACT

In this research various aspects of a password based authentication are

described. First, methods of password storage are compared and evaluated from a

security standpoint. In the next chapter, attacks on password hashes are evaluated

and different methods of protection suggested. Then attacks on login mechanisms

and diverse defense strategies are explored. Last part of the research describes a

novel security testing tool that allows building massive Brute forcing networks of

cooperating users.

But now we are exposed to many security threats: denial of service (DoS),

scanning, password cracking, spoofing, eavesdropping, spamming, phishing, worms

and others. As a result, many companies and organizations define their network

security policy. It is a set of rules that should be followed by users to avoid or at least

mitigate the security threats. Technically, the policy is often implemented by

firewalls, intrusion detection and prevention systems (IDS, IPS) or a virtual private

network (VPN). The firewall represents basic level of a defense. It inspects network

traffic passing through it and denies or permits the passage based on a set of rules, a

part of the network security policy. An intrusion detection and/or prevention should

be performed to fulfill two basic requirements: to identify and/or protect host

computer from security threats in the administered network connected to the Internet

or other networks and vice versa. We point out that both requirements are important.

The network is exposed to attacks from outside as well as from inside. In

addition, the second requirement is important due to the presence of botnets that

exploit “zombie computers” in our network and use them to other malicious

activities. In short, IDS and IPS are the “checkpoints” that supervise firewalls or

other components dedicated to the network defense.

III

Table of Contents
ABSTRACT... II

CHAPTER I .. 1

INTRODUCTION .. 1

1.1 Comparison with other authentication schemes .. 1

1.2 Password storing ... 3

1.2.1 Plaintext passwords .. 3

1.2.2 Encrypted passwords .. 3

1.2.3 Hashed passwords .. 5

1.3 Password cracking ... 6

1.4 Dictionary attacks .. 7

1.4.1 Derivation of password from username ... 8

1.4.2 Dictionary enhancing ... 9

1.4.3 Purpose-built dictionaries .. 9

1.5 Brute force attacks ... 10

1.6 Rainbow tables .. 12

1.7 Safeguarding passwords .. 12

1.7.1 Salting .. 12

CHAPTER II ... 14

METHODS FOR SECURITY ... 14

2.1 Intrusion Detection .. 14

2.1.1 Host-based Intrusion Detection .. 15

2.1.2 Network-based Intrusion Detection ... 15

2.2 Intrusion Prevention .. 16

2.3 Flow-Based Traffic Acquisition .. 16

2.3.1 NetFlow and IPFIX .. 16

2.3.2 Other Flow-based Technologies .. 18

2.4 Signature-based Detection... 18

2.5 Stateful Protocol Analysis ... 21

2.6 Anomaly-based Detection ... 22

2.6.1 Holt-Winters Method ... 23

2.6.2 Minnesota Intrusion Detection System (MINDS).. 25

2.6.3 The Work of Xuetal. .. 27

IV

2.6.4 Origin Destination Flow Analysis .. 29

2.6.5 Cooperative Adaptive Mechanism for Network Protection (CAMNEP) 30

2.7 Summary ... 34

CHAPTER III ... 35

VISUALIZATION .. 35

3.1 Charts .. 36

3.2 Mapping in Space .. 37

3.3 Graphs ... 38

3.4 Summary ... 41

CHAPTER IV ... 43

DESIGN OF THE IDS ... 43

4.1 Requirements on the IDS .. 43

4.1.1 Accuracy .. 43

4.1.2 Detection of Novel Threats .. 44

4.1.3 Operating in a High-speed Networks ... 44

4.1.4 Early Detection... 44

4.1.5 Long-term Data Storage ... 44

4.1.6 IPv6 support ... 44

4.1.7 Scalability ... 45

4.1.8 Easy Maintaining ... 45

4.1.9 Transparency .. 45

4.1.10 Security Robustness ... 45

4.1.11 Anomaly Detection in Encrypted Traffic ... 46

4.1.12 User-friendly Interface and Well-arranged Visualization .. 46

4.2 Solution ... 46

4.2.1 Network Probes .. 48

4.2.2 Collectors ... 52

4.2.3 MyNetScope and Data Sources .. 53

CHAPTER V ... 55

DEVOLOPMENT OF IDS .. 55

5.1 Deployment status ... 55

5.1.1 Network Probes .. 55

5.1.2 Collectors ... 57

V

5.1.3 MyNetScope and Data Sources .. 57

5.2 Use Case .. 59

5.3 Summary ... 61

CONCLUSION ... 62

REFERENCES ... 64

VI

LIST OF FIGURES
Figure 1: CAMNEP Architecture ... 29

Figure 2: A chart of network traffic volume in NfSen .. 35

Figure 3: port scan the GPL .. 37

Figure 4: Network traffic as a graph ... 38

Figure 5: Network traffic as a listing of flows .. 39

Figure 6: The Architecture of the proposed system .. 46

Figure 7: Network probe location ... 49

Figure 8: probes inside the network .. 50

VII

Problem

This research analyses the performance and aspects of password authentication protocol, more

specifically, show method for password security, vulnerabilities, performance factors and solutions

for improving of securing of password with this method.

Research Goals

The main goal of this research is to find out the different protocols of password authentication.

Investigate methods that can improve security, compare between the security aspects, performances

factors in different protocols that are used to implement and to find out which one is the most reliable

and efficient in different scales of our system.

Research Questions

This research is aimed to answer the following questions:

- What are the methods of password authentication?

- What is the performance of PAP protocol?

Research Methodology

The methodology of this research is divided into a literature study part and a practical part. In the

literature study part, the different security methods of the PAP methods are investigated, to find out

security solutions, vulnerabilities and attacks in different PAP methods, compare between the

functionality of these protocols and find out the performance elements of PAP in different PAP

methods to improve the performance. In the practical part a PAP protocol is simulated to measure

the performance and find out some of the security vulnerabilities and the solutions to make our

system more secure.

Research Structure

The rest of this research work is organized as follows: Chapter two explains about different method

of password security and other technologies that is used in the storage area and make comparison

between them, explain different protocols that are already used for implementing PAP and make a

comparison between them about the working structure. Chapter three focuses more on the

visualization and discusses the security risks, threats and vulnerabilities in PAP and different types

of attacks in each of the protocols that already PAP implements on them, such as Chap and verifies

the defense method for each one of them used to increase the level of security. Chapter four discusses

about design of IDE and makes comparison between the performance elements of the PAP protocols

VIII

and the effects of some security issues on the performance of the system. Chapter five contributes

with a set of conclusions from the research work and show the implementation of IDE.

1

CHAPTER I

INTRODUCTION

Ever since computers have started to be widely adopted and carriers for data

requiring restricted access, the password based authentication has taken place as a

most commonly used authentication method. Despite the long time that has passed

since then, the password based authentication has not been dethroned by any other

method. Even though these methods often offer better security, they usually come

with a price that is too high to spur moving away from passwords. If this can be

taken as a precedent, then it can be expected that passwords will account for largest

part of authentication even in the near future. For this reason, it is worthwhile to

explore strengths and weaknesses of the password authentication and strive for

further improvements.

1.1 Comparison with other authentication schemes

There are many different methods of a user authentication, but there exist only

three widely acknowledged categories in which every method should belong.1

These categories are based on the relationship between a user and an object that the

user authenticates himself or herself with:

• Something the user knows Typical example of such category is the

password based authentication, but it can be any question-answer scheme.

• Something the user has To this category falls every method requiring some

kind of authentication token. Be it a smartcard or a simple user ID (like

passport).

2

• Something the user is Mostly biometrics, but in some sense it can be for

example the CAPTCHA (user proves being human, not certain human).

Methods from different categories can be combined together to create a multi-factor

authentication that is considered much stronger than using method(s) only from one

category. Also such combination is likely to add together advantages of said

categories while reducing their disadvantages.

 Advantages disadvantages

Knows easy to manage, cheap easy to leak, lost is hard to

notice

His hard to copy, lost is

spotted quickly

can be damaged, slow

replacement if lost or

damaged

Is always available, hard to

steal

Irreplaceable when
compromised, false

acceptance or false

rejection
Table 1: Authentication categories comparison

As can be seen from the table, the password based authentication is used and

valued because of being easy and cheap. The user is not bothered with additional

equipment or an uncomfortable procedure when gathering biometric information

and administrators need very little equipment to both store and query the password.

But these features come with a price - users like to have weak passwords and tend

to lose them. Unlike in other categories, such loss is recognized only from secondary

effects (e.g. company rival knowing trade secrets) which can have devastating

consequences.

3

1.2 Password storing

A password loss has to be prevented at two endpoints. The first one is the

user. Probably no sensible technical measure can stop him or her from writing down

the password on a little piece of paper titled ’my password’ and then leave it

somewhere for adversary to grab. The only thing that can be done here is to force

the user not to act like this.

The other endpoint however has much better prospects. Databases of user

passwords can be shielded with layers of security measures to stop the attacker.

These measures range from active defense elements like firewalls and IPSs to

passive measures that serve as a last resort in case the attacker has breached in. One

of such passive measures lies in a way how passwords are stored.

1.2.1 Plaintext passwords

Having a password on a disk in a plaintext form indicates more of a lack of

security measures than the opposite, nevertheless, it is still a valid way to store

passwords and as such is worth mentioning. The security flaw is obvious - when the

attacker gets in, all passwords are waiting to be abused. But what could be the

motivation to use such a weak measure? First, for a creator of the system it is the

easiest possible way to get his job done. Second, a user who has forgotten a password

can get it from an administrator without the need to change it. Needless to say that

such arguments are not even remotely an excuse, and storing passwords in a

plaintext should be avoided at all costs.

1.2.2 Encrypted passwords

Much better way to store a password is to cryptographically protect it. That way

any attacker who manages to gain access to passwords is confronted with another,

mostly computationally intensive task. Often this effort has to be spent on each

4

password separately leaving the others secure. Of many various ways of

cryptographic protection of passwords one method is to employ block ciphers. This

method is used for example in DES version of UNIX crypt (3) library function. To

produce an output that is going to be stored instead of a password, following

sequence of steps is executed:

• the password is truncated to eight characters

• each character is coerced to 7 bits, thus constituting a 56-bit DES key

• this key is then used to encrypt one block of all zeroes

5

the ciphertext is repeatedly encrypted 25 times with 12 bits of salt

• a result is stored as a base64 encoded string

These steps are repeated every time the password is supplied, and resulting

strings are compared. It needs only a little modification to work with any other

cipher. Passwords stored in this form are fairly resistant to attacks but do not enable

lost password recovery for forgetful users. But this is just a minor inconvenience.

One specific method, that is somewhere in the middle between passwords in

plaintext and passwords encrypted as described before, is encryption with a secret

key. This approach has an advantage of allowing password recovery. Although it

may appear to be as secure as is the strength of an encryption function, there is more

to consider. Matter of a secrecy of the password was just shifted to matter of secrecy

of that key. Once the key is leaked all passwords are vulnerable. Therefore, this

method should be considered insecure.

1.2.3 Hashed passwords

The crypt (3) example in the previous section was not an encryption per se,

because the password was used as a key, but the encrypted text was not intended to

be hidden. It can be viewed as an example of a hash function constructed in an

uncommon way, because it satisfies definition presented by Pernell One way hash

function is a function h satisfying the following conditions:

• The description of h must be publicly known and should not require any secret

information for its operation

• The argument X can be of arbitrary length and the result h(X) has a fixed

length of n bits

6

• Given h and X, the computation of h(X) must be "easy"

The hash function must be one-way in the sense that given a Y in the image

of h, it is "hard" to find a message X such that h(X) = Y and given X and h(X)

it is "hard" to find a message X1 different form X such that h(X1) = h(X)

Hash functions are probably the most prevalent method of a password

transformation before storing. They offer a reasonably strong protection (especially

when using functions producing hashes longer than 128 bits), are relatively easy to

compute and protect even against insider attacks, which previous methods failed on.

During last few years there have been many researches on attacks on various

hash functions, especially MD5 and SHA [1,2,6,7]. They have succeeded in

discovering time-effective algorithms for finding collisions, but they are generally

not a threat for password storage. Collision means that few bytes of plaintext are

altered yet produce the same hash. And because the plaintext (password) is not

known the collision itself is not going to help.

1.3 Password cracking

A security of a password is not equal to a security of a hash function that was

used to hash it. On the contrary - no matter how strong the function is, a wrongly

chosen password can render all security measures useless because password itself

could be susceptible to various kinds of attacks.

Choosing the "right" password means balancing two interests - having a

password that attacker will not be able to guess and having a password that user is

going to remember without the need to write it down and eventually leave it in an

7

insecure place. This is by no means trivial task and following text aims to create

guidelines for it with respect to various attacks that adversary may use.

1.4 Dictionary attacks

This category of attacks is by far the most popular for two reasons:

It is computationally least intensive. To put things in perspective: a large wordlist

with words 8 letters long can be between 100 - 250 MB in size. That is some

120 – 300 thousand words. Compared to about 209 trillion of different 8

character words that exist in lower-case alphabetical space it is a tiny fraction

that an attacker has to try in comparison to simple brute force attack.

 It is working in many cases. Like many attacks based on a social engineering, it

is working because of how humans tend to act. A user (especially not security

educated), when given a choice to choose his own password, tends to stress

only the memory aspect, i.e. "will I remember it in two days?". This

stimulates using words found in his or her vocabulary with at most some

cosmetic changes.

The dictionary attack is, however, as powerful as a dictionary itself. While there

are many places where an adversary can get a dictionary (language corpus, etc.) such

sources do not provide material "good enough" for most password cracking attempts

because of aforementioned cosmetic changes. These changes constitute for example

in appending a digit after a word chosen for password, which effectively nullifies

the value of such dictionary in case of simple matching attack. Needless to say that

over the years there emerged techniques of reinforcing such dictionaries to cover

8

changes ranging from a simple appending to various permutations. These techniques

have to be taken into account.

1.4.1 Derivation of password from username

As was mentioned before, users tend to create passwords that are easily

remembered. One way to reach such goal is to have a password that is somehow

similar to a username which then serves as a memory hook for a forgetful mind.

This is a very double-edged method as users are generally less creative than

adversaries

9

wanting to steal their credentials. Here is a short list of derivations that are usually

taken into account when adversary uses some password cracking program.

• Username duplication. User ’John’ with password ’John John’.

• Password as reversed username.

• For case sensitive passwords, converting username to upper/lowercase.

• Using N letter substring of username.

• Appending numbers and special characters to username.

• Prefixing username with numbers and special characters.

• Removing vowels from username.

1.4.2 Dictionary enhancing

This method is virtually the same as the previous one, with only few

differences. First – there are much more words to apply a transformation to. Second

- because of that not so many transformations are feasible on a current hardware.

This method can grow a wordlist thousand fold and that is the reason why some

transformations (like selective upper/lowercasing) have to be discarded.

1.4.3 Purpose-built dictionaries

Sometimes an overly strict password creation policy can itself because of a

failing security. Suppose that there is an administrator responsible for a password

policy who decides that all passwords should have the same form. All eight

characters long, consisting of lowercase letters and numbers. And let’s say that this

administrator knows about previously mentioned attacks. He or she decides that good

countermeasure would be a more precise specification of password structure that

would discourage ordinary users from choosing simple passwords.

Let’s say that this form has been chosen: NxxxNNNx, where N is number and

x is lowercase letter. Such form is probably going to guard well against most of

10

transformations except the leetspeak conversion. However, once an adversary gets

to know this pattern (and it has to be expected that adversary will find the pattern

once) he or she can build a specific dictionary that will target this specific form. In

this case the needed dictionary would have 264 _ 104 different words. That is a

dictionary around 38 GB large, containing passwords for everyone abiding to this

password policy. As the benchmarks of JTR have shown, it would take less than a

day to crack every single password (DES) on a single computer. Not exactly secure...

1.5 Brute force attacks

Brute forcing a password is mostly a last-resort approach for any adversary.

The nature of this attack dictates that all possible password combinations have to be

tried until a password is found. Searching through an entire password space is very

time consuming and the time needed to find a password varies greatly. For example,

if an adversary was to commence simple brute forcing attack on an eight-character

password starting from ’aaaaaaaa’ and ending at ’zzzzzzzz’ he would find ’clueless’

almost eight times faster than ’wiseguys’. If there were no other and more

sophisticated ways of bruteforcing there would be only passwords with characters

having high ordinal value. That is obviously not the case and following text will

present some methods of speeding the brute forcing and increasing the chance of

finding most of passwords in shortest time.

With regards to previously discussed methods - when an adversary decides to use

brute forcing it can be expected that the password has at least one of the following

characteristics:

• it is more than seven characters’ long

• it is not a variation of a username

• it is not derivable from a wordlist

11

In the first case, brute forcing is probably not going to help him that much,

because the password space grows geometrically with a password length. Other cases

are much more interesting

• a password with such characteristics is probably product of:

• a security educated user

• a random password generator

These two do not seem to have much in common, but as will be shown later in

the text these two can behave similar enough to treat them as a one. Random

password generators can be divided into number of categories, but in this text only

two will be used, based on whether some conditions apply to generated passwords.

The first category are simple generators. They are easy to program (password length

times choose a letter from the character space) and are designed to exhaust the entire

password space. Produced passwords are completely random (assuming that a good

random function is used) and are a biggest obstacle to an adversary, because there is

no way to reduce the password space and speed the brute forcing up. Although they

may seem like an ideal source of passwords, they are not. And the reason is simple -

users do not and often cannot remember them, which largely undermines this

method. According to author’s experience, most of services that used random

generators did not produce passwords longer than seven characters. They have

probably done it so that users could remember them, but in the same time they have

opened a hole into system by having too small password space.

The second category consist of more sophisticated generators, that are trying to

overcome the disadvantage of simple generators while remaining secure and random

enough. Generally, it is done by using character permutations that are easy to

remember. For example, common di- and trigrams present in a language that usually

12

do not solely consist of either vowels or consonants (which can easily happen with

simple generators). Presence of character groups also determines a position of special

characters (placed in between) that are inserted into a password for a bigger security.

As an outcome, passwords can be said out loud by users without twisting their

tongue, which adds to easier remembering. This is a quality sought probably by every

user - therefore it can be expected that sophisticated generators and educated users

are going to produce relatively similar passwords.

1.6 Rainbow tables

Let’s imagine a skilled adversary - he has probably brute forced passwords

many times. And with a limited number of hashing functions it is for sure that during

his attempts he has created and used some hashes more than once. It is in his own

interest to store already computed hashes with a corresponding password to use them

later without the need for re computation. Luckily for him (and sadly from a security

standpoint) there is a way to do it. However, it does not work exactly in such fashion

that cracking attempts are recorded for future use. Instead adversary precomputes as

much hashes as possible (preferably to fill entire hash space) and then only looks for

matches. A method to do this effectively was devised by Hellman and improved by

Rivest, Matsumoto, Kim, Kasuda and Oechslin.

1.7 Safeguarding passwords

The previous text has shown methods that are used for an effective password

cracking. The rest of this chapter will present methods that can narrow options that

attacker has and will suggest appropriate ways to construct safe passwords.

1.7.1 Salting

Should an adversary get hold of a hashed password list (e.g. /etc/shadow) it is

necessary to make cracking of them as much difficult as possible. At best to disable

13

methods that cracks a password for sure in a short time (i.e. rainbow tables and its

variants). One way to do so is a simple principle called salting.

Salt is a short (12 - 48 bits usually) random piece of data, that is concatenated

with password before hashing takes place. It is then stored with the password as a

public information. While it does not increase a password strength when adversary

is trying to crack it with ordinary methods (dictionary, etc...), it effectively nullifies

the power of rainbow tables, because a table precomputation must be done for each

possible salt. 16 bits of salt then means that for cracking password of eight characters

an adversary would need table for 10 characters. That would take a lot of time to

precompute (salt is random, so the rainbow table must be built for all 224 ascii

characters) and would be truly huge. The salting, when done wrong, can backfire

though and these two examples from real life should show that the need for random

salt is very reasonable.

_ In the first case, programmers obviously did not understand the concept of

the salt very much and used one magic number as a salt for each password. Result -

it was almost like they have not used the salt at all. For the first time, an adversary

would have to re compute a table from scratch, but every other cracking attempt

would be carried out in minutes.

_ Second example happened in a company which name should remain secret

to save them (or at least their security department) from a shame. It was a company

that decided to use random generated passwords, 8 letters long and alphanumeric.

On top of such adequately secure scheme they have chosen to use first two letters of

generated password as a salt. Thanks to this flash of security insight, they have

effectively reduced their password space almost 13 hundred times and served their

customer’s accounts to adversaries at silver platter.

14

CHAPTER II

METHODS FOR SECURITY

This chapter provides an introduction to the intrusion detection and modern

methods for the network security analysis. We are mainly focused on the methods

working at the IP layer. First of all, we explain basic terms related to the intrusion

detection and traffic acquisition.

Then we describe and evaluate each method, especially according to the following

criteria:

1. Coverage,

2. Effectiveness,

3. Performance,

4. Applicability for different types of data acquisition,

5. Ability of intrusion detection in encrypted traffic.

The first criterion is ability to detect security threats. The coverage is complete if the

method detects both known and unknown threats. The second criterion stands for

detection accuracy, the rate of false positives produced by the method. The speed of

processing network traffic by the method, the third criterion, is crucial for a

deployment in high-speed networks.

The fourth criterion determines whether packet capture and/or (sampled) flow-based

data are suitable as the input of the evaluated method. Last criterion is more and more

important in today’s network. A basic classification of methods is taken from [12].

2.1 Intrusion Detection

We can divide intrusion detection systems (IDS) into two basic classes

according to their position in the network: host-based intrusion detection systems

15

and network-based intrusion detection systems. Note there are other points of view

of the IDS classification.

2.1.1 Host-based Intrusion Detection

This type of detection is performed on a host computer in a computer network.

Host-based intrusion detection system (HIDS) usually monitors log files (e. g.

firewall logs, web server logs and system logs) and the integrity of system files (e.

g. the kernel integrity or opened ports).

2.1.2 Network-based Intrusion Detection

 On the contrary, the network-based approach observes the whole network or its part.

All inbound or outbound network traffic is inspected for suspicious patterns. The

patterns can be represented as a signature, a string of characters that describes a

certain attack. Another different approach is an anomaly-based detection. First, the

model of a normal network behavior is created. Then the difference to the model is

evaluated. If it is greater than predefined value (threshold), it can point out an attack.

Other network-based intrusion detection system (NIDS) use stateful protocol

analysis to detect suspicious, unexpected or invalid sequences of packets in terms of

a specific protocol. These methods are discussed in detail in relevant sections in this

chapter. NIDS are passive systems: they are “invisible” to other hosts and mainly for

the attackers.

In connection to IDS, there are frequently mentioned two following terms: false

positive and false negative. The former denotes a false IDS alert: the system

classifies benign traffic as malicious. On the contrary, the latter points to the

malicious traffic that was not recognized by IDS. Of course, there is a tendency to

minimize the numbers of both false positives and negatives. For example, if the IDS

produces high false positive rate, it bothers the administrator about a subsequent

16

manual analysis of these alerts. In addition, there are some techniques, such as

squealing, which exploit the vulnerability of IDSs to high false positive rates.

2.2 Intrusion Prevention

In comparison to IDS, an intrusion prevention system (IPS) is a reactive

system in which ID is tightly coupled with firewall (and should be a part of the

communication link). The main task of IPS is to mitigate (stop) the detected attack.

IPS can be divided into three classes: host-based, network-based and distributed IPS.

2.3 Flow-Based Traffic Acquisition

The classic approach of many IDS or IPS to data collection is to capture all

network packets that pass through the system, most frequently in pcap format1. In

contrast, many routers and monitoring probes perform a flow-based data collection,

typically in NetFlow format.

2.3.1 NetFlow and IPFIX

NetFlow was originally developed by Cisco Systems, the world leader in

networking solutions. Many Cisco switches and routers are capable of exporting

NetFlow records. There are two widely used versions: NetFlow version 5 and 9. The

former is Cisco’s proprietary format and the latter was standardized as an open

protocol by IETF in 2006.

A flow is defined as a unidirectional sequence of packets with some common

properties that pass through a network device. These collected flows are exported to

an external device, the NetFlow collector. Network flows are highly granular; for

example, flow records include details such as IP addresses, packet and byte counts,

timestamps, Type of Service (ToS), application ports, input and output interfaces,

etc. [34] Thus, the flow-based data collection provides an aggregated view of

network traffic.

17

IPFIX The continuation of IETF effort leads to unification of protocols and

applications that require flow-based IP traffic measurements. RFC 3917 defines

requirements for exporting traffic flow information out of routers, middle boxes (e.

g. firewalls, proxies, load balancers, NATs), or traffic measurement probes for

further processing by applications located on other devices [33]. Consequently,

Cisco’s NetFlow version 9 was chosen as the basis of the IP Flow Information Export

(IPFIX). There are no fixed properties (5-tuple) such as in NetFlow version 5. The

user can flexibly define the properties used for flows distinction.

RFC 5101, published in January 2008, specifies the IPFIX protocol that serves

for transmitting IP Traffic Flow information over the network [37]. Next, RFC 5102

defines an information model for the IPFIX protocol. It is used by the IPFIX protocol

for encoding measured traffic information and information related to the whole

process [38]. Thanks to the IPFIX flexibility, RFC 5103 can introduce the term

Biflow, a bidirectional flow, and describe an efficient method for exporting Biflows

information using the IPFIX protocol [39]. The bidirectional view of network traffic

might be useful for security analysis. The development of IPFIX is not finished. The

IPFIX working group is still working on a few Internet drafts that would be published

as RFC. The most recent RFC was issued in April 2008. It provides guidelines for

the implementation and use of the IPFIX protocol. [40] Packet sampling is performed

(especially by routers) to save the NetFlow exporter resources.

We distinguish two basic types of sampling:

• Deterministic – exactly nth of every n packets is sampled,

• Random – each packet is sampled with a probability 1/n.

The constant n is called sampling rate. For example, if it is set to 4 and the device

receive 100 packet, 25 packets are analyzed and 75 packets are dropped for the

analysis. Only common packet header fields are recorded, not the whole payload.

18

The flow sampling is another type of aggregation.

Both the active and the inactive timeout values affect a flow creation. The

active timeout is applied to long-lasting flows. If the flow has been inactive for the

inactive timeout or the end of the flow is detected, flow statistics are exported from

the probe to a collector. The collector is a server dedicated to collection, long-term

storage and analysis of flow statistics.

2.3.2 Other Flow-based Technologies

Proprietary Cisco NetFlow or open IETF standards are not the only

one flow-based solutions. Another industry standard was described in

RFC 3176. SFlow is a technology for monitoring traffic in data networks

containing switches and routers. In particular, it defines the sampling

mechanisms implemented in the sFlow Agent for monitoring traffic, the SFlow

MIB2 for controlling the sFlow Agent, and the format of sample data used by the

sFlow Agent when forwarding data to a central data collector [32]. SFlow is

supported by Alcatel-Lucent, D-Link, Hewlett-Packard, Hitachi and NEC. Other

leaders in networking also develop their proprietary flow-based solutions: Juniper

Networks use Flowy and Huawei Technology their NetStream.

2.4 Signature-based Detection

This of the oldest methods for security analysis. We mentioned it here because

it is widely used by many commercial and open-source IDSs.is one

Description A signature is a pattern that corresponds to a known threat.

Signature-based detection is the process of comparing signatures against observed

events to identify possible incidents. It is the simplest detection method because it

just compares the current unit of activity, such as a packet or a log entry, to a list of

19

signatures using string comparison operations. [12] In short, the detection works with

“local” information.

Evaluation This method is very effective at detecting known threats, but largely

ineffective at detecting previously unknown threats, threats disguised by the use of

evasion techniques, and many variants of known threats. [12] For example, if the

intruder use the Unicode representation of the slash character (%c0%af) and the

signature contains the slash, signature-based detection is not successful (false

negative). [1] Next, we describe an example of the signature. The following string is

a simple rule for an open-source signature-based IDS Snort. [42]

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

(msg: "WEB-ATTACKS kill command attempt"; flow:to_server, established;

content:"/bin/kill"; nocase; classtype:web-application-attack; sid:1335; rev:5;) If

Snort captures and recognizes a TCP packet with source IP address in the external

network, any source port, destination address, destination port of HTTP server in the

administered network and the payload contains string "/bin/kill", it alerts

"WEBATTACKS kill command attempt" according to the rule. The rule contains

variables $EXTERNAL_NET, $HTTP_SERVERS and $HTTP_PORTS. They must

be set by the administrator, Snort (or any signature-based IDS) does not know

particular values. Thus, the correct detection depends on up-to-date configuration.

The rule above gives an example of possible false positive. Consider we

provide an email service with web interface on our web servers. If someone sends

an e-mail containing the searched string “/bin/kill”, Snort classifies such traffic as

malicious. Particular network traffic and rules themselves influence the accuracy of

detection. We can observe very low false positive rate on dedicated lines and vice

versa. There are many ways to create rules and signatures. We could use any

destination port and/or destination host instead of $HTTP_PORTS and/or

20

$HTTP_SERVERS in our example. Snort and other signature-based IDS allow

specify the searched content as a regular expression too. E. g., it is useful when the

signature differs only in used protocol (FTP, HTTP or HTTP). “General” rules are

easy to manage, but can cause higher false positive rate. Snort was originally

designed for small, lightly utilized networks. [42]

The core of the signature-based detection is generally expensive string

matching. Every packet and its payload is inspected for searched signatures. Snort

usually runs on COST (commercial off-the shelf) hardware and its performance is

not satisfactory for this task in multi-gigabit networks.

This gap is fulfilled by hardware accelerators. Traffic Scanner, a

hardwareaccelerated IDS based on Field-Programmable Gate Arrays (FPGAs).

System uses an architecture based on non-deterministic finite automaton for fast

pattern matching. Using this approach, throughput up to 3.2 Gbps is achieved on for

all rules from Snort database. [46] Hardware acceleration is also interesting for

commercial companies. [8]

Although signature-based detection handles mainly with packet payload, some

signature consist of properties acquired by flow-based data collection. Then the

limiting detection is possible. However, if sampling is used, some packets containing

signatures can be lost and the effectivity is thus lower. We chose Snort as an

implementation of the signature-based detection for evaluation.

We conclude the coverage is low, because only the known attacks specified by

signatures are revealed by this method. The affectivity vary according to the quality

of signatures, the risk of high false positives is high in common networks, even

without the use of some IDS evasion techniques, e. g. squealing [43]. Performance

is reasonable for high-speed networks only if it is supported by the hardware

acceleration. The use of flow-based data as an input for this method is limiting.

21

Generally, signature-based IDS suffers from considerable latency in deployment of

a brand-new rule (a signature) in such system. Last, but not least, the method cannot

cope with encrypted payload.

2.5 Stateful Protocol Analysis

Another approach to intrusion detection is stateful protocol analysis that

operate mainly on the higher layers of the TCP/IP network model. We mention it

here for completeness and comparison.

Description Stateful protocol analysis (alternatively deep packet inspection) is

the process of comparing predetermined profiles of generally accepted definitions of

benign protocol activity for each protocol state against observed events to identify

deviations. Unlike anomaly-based detection, it relies on vendor-developed universal

profiles that specify how particular protocols should and should not be used. That

means that the IDS is capable of understanding and tracking the state of network,

transport, and application protocols that have a notion of state. [12]

For example, when a user starts a File Transfer Protocol (FTP) session, the

session is initially in the unauthenticated state. Unauthenticated users should only

perform a few commands in this state, such as viewing help information or providing

usernames and passwords. An important part of understanding state is pairing

requests with responses, so when an FTP authentication attempt occurs, the IDS can

determine if it was successful by finding the status code in the corresponding

response. Once the user has authenticated successfully, the session is in the

authenticated state, and users are expected to perform any of several dozen

commands. Performing most of these commands while in the unauthenticated state

would be considered suspicious, but in the authenticated state performing most of

them is considered benign. [12]

22

Evaluation Although there are some tools implementing basic stateful

protocol analysis (such as stream43 in Snort), the method is not wide-spread (such

as signature-based detection).

We identify the following reasons. Firstly, it is a very resource-intensive task,

particularly in high-speed networks. The complexity of the analysis grows with the

number of (simultaneous) sessions 4. Secondly, it relies on the “knowledge” of all

analyzed protocols. Notice there are numerous differences between implementations

by various vendors and definitions in RFC and other standards. In addition, only the

analysis of known protocols is possible. Next, the attacks (e. g., denial of service

attacks) that utilized well-formed packets and do not violate the normal behavior are

not detected. Finally, the method is impuissant to encrypted packet payload too.

On the other hand, the method generally provides relatively high accuracy. In

contrast to signature-based method that searches for known patterns in the packet

payload, this method works with sessions. The method can correlate information

obtained from the whole session together and provides better view inside the network

traffic. Stateful protocol analysis can also reveals some threats that could be omitted

by other methods that performs port-based traffic classification. Last, but not least,

a limited subset of the analysis can process flows too.

2.6 Anomaly-based Detection

It is the process of comparing definitions of what activity is considered normal

against observed events to identify significant deviations. An IDS using

anomalybased detection has profiles that represent the normal behaviour of such

things as users, hosts, network connections, or applications. The profiles are

developed by monitoring the characteristics of a typical activity over a period of

time. The major benefit of anomaly-based detection methods is that they can be very

effective at detecting previously unknown threats. For example, suppose that a

23

computer becomes infected with a new type of malware. It will probably perform

behaviour that would be significantly different from the established profiles for the

computer.

[12]

2.6.1 Holt-Winters Method

This method, also known as triple exponential smoothing, has proven through

the years to be very useful in many forecasting situations. It was first suggested by

C. C. Holt in 1957 and was meant to be used for non-seasonal time series showing

no trend. He later offered a procedure (1958) that does handle trends. Winters (1965)

generalized the method to include seasonality, hence the name “Holt-Winters

Method”. [44]

Description Many service network variable time series exhibit the following

regularities (characteristics) that should be accounted for by a model:

• A trend over time (i. e., a gradual increase in application daemon requests over

a two month period due to increased subscriber load).

• A seasonal trend or cycle (i. e., every day bytes per second increases in the

morning hours, peaks in the afternoon and declines late at night).

• Seasonal variability (i. e., application requests fluctuate wildly minute by

minute during the peak hours of 4–8 pm, but at 1 am application requests hardly vary

at all).

• Gradual evolution of regularities (1) through (3) over time (i. e., the daily cycle

gradual shifts as the number of evening daylight hours increases from December to

June). [3]

A simple mechanism to detect an anomaly is to check if an observed value of

the time series falls outside the confidence band. A more robust mechanism is to use

a moving window of a fixed number of observations. If the number of violations

24

(observations that fall outside the confidence band) exceeds a specified threshold,

then trigger an alert for aberrant behaviour. Define a failure as exceeding a specified

number of threshold violations within a window of a specified numbers of

observations (the window length). See details in [3].

The author outlines this method for networking monitoring, but it can be useful

for security analysis too. The continuation represents NfSen-HW, an experimental

version of NfSen5 by Gabor Kiss from HUNGARNET6. He added a kind of aberrant

behaviour detection based on the built-in Holt-Winters algorithm of RRDtool. [21]

Evaluation The settings of the parameters _, _, , confidence band and threshold are not clear. The

model parameters need to be set and tuned for the model to work well. There is no single optimal

set of values, even restricted to data for a single variable. This is due to the interplay between multiple

parameters in the model. [3] The author also gives some suggestions and, more generally,

the authors of [14]. The fact that the fine tuning of Holt- Winters analysis is not a

trivial task is confirmed by [11]. The settings could influence the false positives rate

and consequently the accuracy of the method. The training period is also crucial: we

naturally get false positives, if the malicious activity is considered normal.

A one-week training period usually gives satisfactory results. The coverage is

quite good. Because some threats and attacks behave similarly, we can suggest the

“sensitive” variable of network traffic and then detect even the previously unknown

threats.

The question of performance is tightly coupled with the data acquisition.

Theoretically, both packet capture and flow-based approach are possible. The latter

provides aggregated information as input for the method. This means that the method

itself does not work with a huge amount of data in (almost) real-time. That ensures

the underlying layer: flow-based probes and collectors. The method “only” computes

the forecast on the basis of the historical data (typically recent week [21]). The

25

flowbased approach was chosen for the deployment of this method in GEANT

project [11] (NfSen-HW relies on NetFlow data).

2.6.2 Minnesota Intrusion Detection System (MINDS)

Description The core of MINDS is an anomaly detection technique that assigns

a score to each network connection that reflects how anomalous the connection is,

and an association pattern analysis based module that summarizes those network

connections that are ranked highly anomalous by the anomaly detection module. The

analysis is performed on 10-minute windows of NetFlow data8. Firstly, the feature

extraction is done. MINDS introduces two types of features derived from standard

NetFlow features: time window-based, connections with similar characteristics in

the last T seconds and connection window-based, last N connections originating

from (arriving at) distinct sources (destinations). The former obviously do not

include malicious activities (such as stealthy port scans) which last more than T

seconds. Hence, it is complemented by the latter.

The time window-based features are:

• Count-dest, number of flows to unique destination IP addresses inside the

network in the last T seconds from the same source,

• Count-src, number of flows from unique source IP addresses inside the

network in the last T seconds to the same destination,

• Count-serv-src, number of flows from the source IP to the same destination

port in the last T seconds

• Count-serv-dest, number of flows to the destination IP address using same

source port in the last T seconds.

The connection window-based feature list follows:

• count-dest-conn, number of flows to unique destination IP addresses inside

the network in the last N flows from the same source

26

• count-src-conn, number of flows from unique source IP addresses inside the

network in the last N flows to the same destination

• count-serv-src-conn, number of flows from the source IP to the same

destination port in the last N flows

• count-serv-dest-conn, number of flows to the destination IP address using

same source port in the last N flows. [27]

Secondly, the data is fed into the MINDS anomaly detection module that uses an

outlier detection algorithm to assign the local outlier factor (LOF) [25], an anomaly

score to each network connection. The outlier factor of a data point is local in the

sense that it measures the degree of being an outlier with respect to its neighborhood.

For each data example, the density of the neighborhood is first computed. The LOF

of a specific data example represents the average of the ratios of the density of the

example p and the density of its neighbors. [27]

Finally, the MINDS association pattern analysis module summarizes network

connections that are ranked highly anomalous by the anomaly detection module. This

module also uses some signature-based detection techniques. See section 3.5 in [27].

Evaluation MINDS was deployed at the University of Minnesota in August

20029. It has been successful in detecting many novel network attacks and emerging

network behavior that could not be detected using signature based systems such as

Snort. See section 3.4 in [27].

Input to MINDS is NetFlow version 5 data, because the authors admit they currently

do not have the capacity to collect and store data in pcap (tcpdump) format. LOF

requires the neighborhood around all data points be constructed. This involves

calculating pairwise distances between all data points, which is an O(n2) process,

which makes it computationally infeasible for millions of data points. The author

suggests a sampling of a training set from the data and compare all data points to this

27

small set, which reduces the complexity to O(n × m) where n is the size of the data

and m is the size of the sample. [27] On the other hand, the effectiveness can be

decreased, namely because of the potential presence of threats in the training set. The

coverage is good; the authors claim that the LOF technique also showed great

promise in detecting novel intrusions on real network data. [27]

2.6.3 The Work of Xuetal.

Kuai Xu et al. developed a method that employs a combination of data mining

and information theoretic techniques applied to flows, classify and build structural

models to characterize host/service behavior’s of similar patterns. [48]

Description The authors work with four-dimensional feature space consisting

of srcIP, dstIP, srcPrt and dstPrt. Then clusters of significance along each dimension

are extracted.

Each cluster consists of flows with the same feature value in the said

dimension. This leads to four collections of interesting clusters: srcIP, dstIP, srcPrt

and dstPrt clusters. The first two represent a collection of host behaviors while the

last two represent a collection of service behaviours. Clusters with feature values that

are distinct in terms of distribution are considered significant and extracted; this

process is repeated until the remaining clusters appear indistinguishable from each

other. This yields a cluster extraction algorithm that automatically adapts to the

traffic mix and the feature in consideration. For example, the authors get 117 srcIP

clusters from 89 261 distinct source IP addresses in trace file used in.

The second stage of the methodology is a behaviour classification scheme based on

observed similarities/dissimilarities in communication patterns (e.g., does a given

source communicate with a single destination or with a multitude of destinations?).

For every cluster, an information-theoretic measure of the variability or relative

28

uncertainty RU of each dimension except the (fixed) cluster key dimension is

computed:

Next, the dominant state analysis capture the most common or significant

feature values and their interaction. The authors find clusters within a behaviour class

have nearly identical forms of structural models (“simpler” subsets of values or

constraints which approximate the original data in their probability distribution).

This model can also help an analyst because it provide interpretive value for

understanding the cluster behaviour.

Finally, the authors identified three “canonical” profiles: server/service behaviour

(mostly providing well-known services), heavy-hitter host behaviour (predominantly

associated with well-known services) and scan/exploit behaviour (frequently

manifested by hosts infected with known worms). These profiles are characterized

by BCs they belong to and their properties, frequency and stability of individual

clusters, dominant states and additional attributes such as average flow size in terms

of packet and byte counts and their variability.

Evaluation Firstly, there is no free available implementation (as opposed to

Snort), hence the benchmarking is doubtful. However, we suppose satisfactory

performance because the method was developed for saturated backbone links. In

addition, it processes aggregated NetFlow data captured in 5-minute time slot10, not

payload of each packet that go through in real-time.

Another advantage is that this method promises high coverage. The behaviour

profiles are built without any presumption on what is normal or anomalous. The

method dynamically extracts significant flows. There are no fixed rules applied to

particular flow or packet.

The flow (cluster) is marked as exploit if it belongs to such profile. What is more,

we can observe rare and interesting relationship between clusters and particular flow,

29

which can point out other (unknown) malicious behaviour (e. g., clusters in rare BC,

behavioural changes for clusters and unusual profiles for popular service ports).

The authors did not mention (and they actually could not mention) accuracy

evaluation, because they used live network traffic without any knowledge of

structure (mainly portion of malicious traffic). Last, but not least, we note the method

stands on a port-based traffic classification.

2.6.4 Origin Destination Flow Analysis

Anukool Lakhina et al. have introduced Origin-Destination (OD) flow as a

basic unit of network traffic. It is the collection of all traffic that enters the network

from a common ingress point and departs from a common egress point. [24] They

believe that a thorough understanding of OD flows is essential for anomaly detection

too. Lakhina et al. distinguish from other authors because they perform

wholenetwork traffic analysis: modeling the traffic on all links simultaneously. OD

flow is often high-dimensional structure (it depends on the size of the network),

hence the authors utilize a technique called Principal Component Analysis (PCA) to

reduce the “dimensionality”. They found that the hundreds of OD flows can be

accurately described in time using a few independent dimensions. The following

description and evaluation is relevant to two chosen methods based on OD flow

analysis (not to the only one as in previous sections).

Description Volume anomalies detection is based on a separation of the space

of traffic measurements into normal and anomalous subspaces, by means of PCA.

[23] The authors suppose that a typical backbone network is composed of nodes (also

called Points of Presence, or PoPs) that are connected by links. The path followed

by each OD flow is determined by the routing tables. The authors use the term

volume anomaly to refer to a sudden (with respect to time step used) positive or

negative change in an OD flow’s traffic. Because such an anomaly originates outside

30

the network, it will propagate from the origin PoP to the destination PoP. OD flow

based anomalies are identified by observing link counts. The mapping of the data to

principal axis i with normalization to unit length follows.

Such vectors capture the temporal variation common to the entire ensemble of

link traffic time series along principal axis i. Since the principal axes are in order of

contribution to overall variance, the first vector captures the strongest temporal trend

common to all link traffic, the second captures the next strongest, and so on. Next,

the vectors (components) are separated by a simple threshold-based method. As soon

as a projection is found that exceeds the threshold (e.g., contains a 3_ deviation from

the mean), that principal axis and all subsequent axes are assigned to the anomalous

subspace. All previous principal axes then are assigned to the normal subspace. [23]

Then we can decompose a set of traffic measurements at a particular point in time

into normal and residual components. The size of the residual component is a

measure of the degree to which the particular measurement is anomalous. Statistical

tests can then be formulated to test for unusually large size, based on setting a desired

false alarm rate. See details in [23], section 5.1. Another method, feature entropy

detection is presented in [22]. The method comes from observation of a change in

distributional aspects of packet header fields, features. In contrast to previous

method, it can also capture some anomalies that have a minor effect on the traffic

volume: worms spreading, stealthy scans or small denial of service attacks. Thus,

traffic feature distributions are used there instead of traffic volume. Entropy captures

in a single value the distributional changes in traffic features, and observing the time

series of entropy on multiple features exposes unusual traffic behaviour. [22]

2.6.5 Cooperative Adaptive Mechanism for Network Protection (CAMNEP)

CAMNEP is an agent-based network IDS. It is not the only one method, but the

whole system based on a few method described above. In spite of the fact, we

31

mention it here, because it is an interesting concept of an incorporation of modern

detection method that profits from the synergy effect.

Description The architecture consists of several layers (see Figure 2.1) with

varying requirements on on-line processing characteristics, level of reasoning and

responsiveness. While the low-level layers need to be optimized to match the high

wire-speed during the network traffic acquisition and preprocessing, the higher

layers use the preprocessed data to infer the conclusions regarding the degree of

anomaly and consecutively also the maliciousness of the particular flow or a group

of flows.

Figure 1: CAMNEP Architecture

Traffic acquisition and preprocessing layer acquires the data from the network

using the hardware-accelerated NetFlow probes and perform their preprocessing.

This approach provides the real-time overview of all connections on the observed

link. The preprocessing layer aggregates global and flow statistics to speed-up the

analysis of the data.

Cooperative threat detection layer consists of specialized, heterogeneous

agents that seek to identify the anomalies in the preprocessed traffic data by means

32

of their extended trust models. There are four agents that employ detection methods

based on MINDS, work of. and work of Lakhina et al. Note the agents are not

complete implementation of the methods described in previous sections. The authors

chose only these features and ideas that are computationally efficient in nearrealtime

and even is possible to integrate them into the whole agent platform. For example,

MINDS agent performs only simplified observation of time windowdefined features

and compares them with history data to determine the anomaly of each flow.

As a result, each agent determines the anomaly of each flow as a value in the

[0, 1] interval, where 1 represents the maximal anomaly, and 0 no anomaly. The

values are shared with other agents. Each agent integrate these values into its trust

model. To preserve the computational feasibility, these models work with significant

flow samples and their trustfulness in the identity-context space.

Trustfulness is also determined in the [0, 1] interval, where 0 corresponds to

complete distrust and 1 to complete trust. Hence, low trustfulness means that the

flow is considered as a part of an attack. The identity of each flow is defined by the

features we can observe directly on the flow: srcIP, dstIP, srcPrt, dstPrt, protocol,

number of bytes and packets. If two flows in a data set share the same values of these

parameters, they are assumed to be identical. The context of each flow is defined by

the features that are observed on the other flows in the same data set, such as the

number of similar flows from the same srcIP, or entropy of the dstPrt of all requests

from the same host as the evaluated flow. The identities are the same for all agents,

but the contexts are “agent-specific”.

The anomaly of each flow is used to update the trustfulness of flow samples

in its vicinity in the identity-context space. Each agent uses a distinct distance

function, because it has a different insight into the problem. The cross correlation

function is implemented to eliminate random anomalies.

33

Finally, each agent determines the trustfulness of each flow and all agents

provide their trustfulness assessment to the aggregation and visualization agents, and

the aggregated values can then be used for traffic filtering. The authors can define

the common misclassifications errors using the trustfulness and maliciousness of the

flow. The flows that are malicious and trusted are denoted as false negatives, and the

flows that are untrusted, but legitimate are denoted as false positives.

The higher level is operator and analyst interface layer. The main component is an

intelligent visualization agent that helps the operator to analyze the output of the

detection layer, by putting the processed anomaly information in context of other

relevant information. When the detection layer detects suspicious behaviour on the

network, it is reported to visualization.

Evaluation First of all, note that CAMNEP as a whole stands on the

incorporated detection methods. One advantage is that the architecture is modular.

The agent platform can be widened by other agents, other (new) anomaly-based

detection methods. The authors argue that the use of trust model for integration of

several anomaly detection methods and efficient representation of history data shall

reduce the high rate of false positives which limits the effectiveness of current

intrusion detection systems. We participated on the evaluation and testing of the

system. Results are also described in [4].

In a nutshell, the attacks with more than several hundreds flows are

consistently discovered by all agents. The slower attacks, using lower number of

flows (300 and less) are more tricky. Note that the evaluation was performed in a

campus network loaded with thousands of flows per second. On the other hand,

CAMNEP is not able to detect attacks consist of few packets, e. g. buffer overflow

attack.

34

2.7 Summary

In this chapter, we studied a few detection methods for security analysis of a

computer network. Definitely, this is not an exhaustive list of known methods, but a

selection of widespread and as well as interesting methods and approaches. We

started with the commonly used signature-based method. Although, it operates at

higher layers than we are focused on, it is good for a comparison with other methods.

Then we briefly described and evaluated stateful protocol analysis that extends

previous method in a particular way. Both methods inspect packets even their

payload. Note this approach also can interfere with law issues.

In contrast, the anomaly-based detection methods generally process flows, namely

5- tuple (srcIP, srcP ort, dstIP, dstP ort, protocol) constructed from packet headers.

It is more efficient, particularly in multi-gigabit networks. On the other hand, the

flow acquisition is not a simple task, especially for non-dedicated devices such as

routers. Due to that fact, packet sampling is used. Unfortunately, it can introduce

some inaccuracy. The impact of packet sampling on anomaly detection is discussed

in [15].We think that future work could be aimed at other key features that form the

flow. Thus, the 5-tuple could be changed and/or extended.

Another significant contrast between statistical methods and the others is that

statistical methods build behaviour profiles at host and service levels using traffic

communication patterns without any presumption on what is normal or anomalous.

However, the “level of presumption” differs. While Holt-Winters algorithm builds a

model for normal traffic based on parameter settings and a priori knowledge of the

periodic structure in traffic, the methods proposed by Xu et al. and Lakhina et al. do

not rely on any parameter settings and normal traffic behaviour is captured directly

in the data.

35

Next, the statistical anomaly-based methods have to cope with three basic

steps that were outlined in [23]:

• Detection,

• Identification,

• Quantification.

In fact, there is only one step in case of the other methods. They simply

“know” what they find (e. g., in terms of signature or protocol definition), hence we

a priori identify a searched anomaly and quantify its relevance.

Finally, there are a few existing IDSs based on the mentioned methods. Snort is a

leading representative of signature-based IDS and the de facto standard for intrusion

detection. It is wide-spread because it is an open-source software. Currently, we did

not find any network-based toolset that implements anomaly based detection

methods. The one exception to this conclusion is most likely CAMNEP that

validated the selected methods in distinct environment to the authors’ environment.

CHAPTER III

VISUALIZATION

The key problem of the analysis is to comprehend the results of the whole

process. We can acquire data that (truly) picture the network traffic and process them

by various methods.

However, if we do not use any data-mining technique, we still have to interpret the

results manually. It is throughout feasible in small network, but absolutely

inconceivable in high speed networks because the human being does not manage to

evaluate the large amount of information. The visualization should help us and

present significant information in different and more comfortable view. For example,

tcpdump is the most used tool for network monitoring and data acquisition.

36

It is a command-line tool that can read packets from network interface or data

file and display each packet on a new line on output. In contrast, a network packet

analyzer Wireshark1 utilizes graphical user interface (GUI) and, for instance,

“colourizes” packet display based on filters. Actually, the tool processes

classification and results are presented as various color’s. We also can interactively

browse the capture data, view summary and detail information for each packet. We

confirm such (small) improvements ease the analysis.

However, not only the color’s usage is the visualization. In this chapter, we

discuss the visualization as an integral part of modern security analysis. We outline

some ways of visualization in current software tools and evaluate their contribution

to the analysis acceleration.

We mainly focus on open-source software that visualize captured network

traffic in pcap or NetFlow format. Meanwhile data in pcap format contain packet

headers and the payload, NetFlow records intentionally omit the payload.

3.1 Charts

The basic visualization instrument is a chart. There are many tools extending

basic software that perform only data acquisition. These tools often plot

twodimensional charts that depict time series of monitored values or their

aggregations. It is a simple and thus widespread method of visualization. Namely,

NfSen [28] integrates nfdump outputs with various charts that show time series of

total number of packets, flows and traffic volume. See Figure 3.1.

The charts are also used in other tools such as FlowScan2, Java Netflow

CollectAnalyzer3, ntop4, nfstat5, NetFlow Monitor6, Caligare Flow Inspector7 or

Stager8. Charts are also used in network monitoring. A network administrator can

easily look at the appropriate chart and immediately make a decision if a network or

37

security anomaly occurred. In such cases, the relevant curve used to grows or drops

sharply.

Figure 2: A chart of network traffic volume in NfSen

3.2 Mapping in Space

This visualization technique draws points in two or quasi three-dimensional

space that is displayed on a screen. It makes use of the human stereoscopic vision

and “convert” patterns in the captured data into graphic patterns in defined space.

For instance, The Spinning Cube of Potential Doom is an animated visual display of

network traffic. Each axis of cube represents a different component of a TCP

connection: X is the local IP address space, Z is the global IP addresses space and Y

is the port numbers used in connections to locate services and coordinate

communication (such as 22 for SSH and 80 for HTTP). TCP connections, both

attempted and successful, are displayed as single points for each connection.

Successful TCP connections are shown as white dots. Incomplete TCP connections

38

are shown as colored dots. Incomplete connections are attempts to communicate with

nonexistent systems or systems no longer listening on that particular port number.

The Cube colours incomplete connections using a rainbow colour map with

colour varying by port number; colour mapping assists viewers in locating the point

in 3D space. [6] For example, a port scan in captured data creates a line in the cube

(see Figure 3.29). It is more useful and efficient view on such event comparing to a

manual examination of a tcpdump or even Wireshark output.

An extension of the Cube is InetVis [16]. Similar approach is also used by

Flamingo [9]. PortVis [29] and rather use two-dimensional space.

 Figure

3: port scan the GPL

3.3 Graphs

A natural representation of the network traffic is a graph where vertices

correspond to hosts and (oriented) edges correspond to the communication (flows)

39

captured between the hosts (see Figure 3.3). This structure digestedly depicts who

communicates with whom. For a comparison, classic output is on Figure 3.4.

Figure 4: Network traffic as a graph

NfVis10 stands for NetFlow Visualizer and it is a proof of concept tool based

on the perfuse visualization toolkit11. The graph-based traffic representation is

enhanced with several significant features. The user can list the flows and traffic

statistics associated with each edge/host. The traffic can be filtered and aggregated

according to many relevant features.

The visual attributes of the display (such as node/edge size and colour) can

also adapt to these characteristics, making the user’s orientation easier. The

information provided by “third parties” (DNS) is seamlessly integrated into the

visualization. As current network traffic is a scale-free network, it is particularly

important to handle the visualization of super nodes, i.e. the nodes with a high

40

number of connections. These nodes are typical for many attack scenarios, as well

as for high-value targets. Visualizer therefore replaces the one-shot connections

to/from these hosts by a special representation of a “cloud” of traffic, and only singles

out the nodes that also connect to other nodes in the observed network.

MyNetScope12 is a network visual analytics platform based on the standard NetFlow

data and heterogeneous data sources. It evolves NfV is in two important ways.

Firstly, it can incorporate other external data sources such as DNS resolution, who is

response, outputs of

41

Figure 5: Network traffic as a listing of flows

Various anomaly detection methods and the network topology information.

Secondly, it is a scalable solution even for wide networks. We participate on its

development and testing, hence we can confirm these statements. The integration of

external data sources is very welcome because it is not common that a security

analyst works only with primary data such as tcpdump outputs or NetFlow records.

He or she generally has to gather additional information from other available sources.

Otherwise, the complete inspection of the security incident is not possible.

We also mention other graph-based visualization tools. VisFlowConnect-IP

visualizes network traffic as a parallel axes graph with hosts as nodes and traffic

flows as lines connecting these nodes. These graphs can then be animated over time

to reveal trends. Cooperative Association for Internet Data Analysis (CAIDA)

develops two interesting tools.

LibSea13 is both a file format and a Java library for representing large directed

graphs on disk and in memory. Scalability to graphs with as many as one million

nodes has been the primary goal. Additional goals have been expressiveness,

compactness, and support for application-specific conventions and

policies.Walrus14 is a tool for interactively visualizing large directed graphs15 in

three-dimensional space. By employing a fisheye-like distortion, it provides a

display that simultaneously shows local detail and the global context. Although, they

are not specialized application for network traffic visualization, it would be useful to

combine them for this purpose if there was a tool that provides output in LibSea

format.

3.4 Summary

We explained why the visualization is important in the security analysis and

introduced three techniques and tools that they utilize. The common used charts were

42

subsequently complemented by methods that use mapping in space and graph

representation of network traffic. We also summarized their contribution to the

analysis.

Naturally, the progress of visualization tools is connected with development

of tools that acquire and/or process network data. E. g., both tcpdump and Wireshark

stand on libpcap a system-independent interface for user-level packet capture16.

Similarly, NfSen is a graphical web-based front end for the nfdump NetFlow tools

and Walrus stands on LibSea.

We hope that a good visualization tool should display a complex picture of the

network traffic, ideally with marked up-to-date security incidents. However, all

available details of hosts and their communication should be displayed in

wellarranged tables, charts and listings on demand too.

43

CHAPTER IV

DESIGN OF THE IDS

We described and evaluated several approaches to the intrusion detection as

well as visualization techniques of network traffic. In this chapter, we take into

account our conclusions and discuss the design of the intrusion detection system for

large networks. First, we identify and give reasons for the requirements on such IDS

and then we design a solution that meet these requirements.

First of all, notice that we decided for intrusion detection system. In contrast

to intrusion prevention system (IPS), it “only” monitors the network traffic and alerts

an operator in case of a security incident. Consequently, he or she analyses the

incident and eventually ensures its mitigation. If we deployed IPS and it alerted false

positive, it would immediately block a legitimate network connection. Another

reason is that IPS must be in-line (a part of the link).

When the IPS fails, the whole network may fail as well. Hence, we are conservative

because of the occurrence of false positive alarms and system failure. These are the

main reasons for the IDS deployment.

4.1 Requirements on the IDS

4.1.1 Accuracy

Accuracy is a fundamental requirement on any IDS. However, it is very

difficult to meet this requirement for current systems. They suffer from high rate of

false positives. In addition, there are some IDS evasion techniques such as squealing.

Due to these facts IDSs are not widely accepted and deployed by network

administrators. High false positive rate overwhelms the administrators that are busy

anyway. On the contrary, false negatives are undetectable in routine operation. So

IDS creates a “false sense of security”.

44

4.1.2 Detection of Novel Threats

Now, there are many IDS capable of detection of known threats, especially

signature-based

IDS such as Snort. Their drawback is that the rule base of such IDS has to be

maintained by the network or security administrator. Moreover, novel threats are

included in the rule base manually, often by third-party vendors. Finally, it is obvious

that these systems are forceless to novel threats. Therefore, the proposed IDS should

detect even novel threats by some more efficient detection mechanism.

4.1.3 Operating in a High-speed Networks

We request a solution that will operate in multi-gigabit networks. In case of

the data link layer is Ethernet, the IDS should support 1 and even 10 Gigabit Ethernet

at wire speed. Note that IEEE is developing 40 and 100 Gigabit Ethernet now.

4.1.4 Early Detection

IDS should begin with the detection as soon as possible a network packet

passes through its sensor. The results should be available to the security

administrator in (near) real-time because some security incidents last only a few

minutes, even a few seconds.

4.1.5 Long-term Data Storage

Besides the early detection, the IDS should also provide records of mid-term

and long-term data. This is important when a Computer Security Incident Response

Team (CSIRT) outside our organization reports a security incident that originated

from our network before some time. If the IDS stores appropriate records, the

security analysis is then easier.

4.1.6 IPv6 support

Although, wide IPv6 [19] deployment is not as fast as it was expected1, we

require its support. Nowadays, there are many well-secured IPv4 networks and the

45

administrators work on IPv6 deployment. However, they often “forget” about IPv6

network security. Thus, the IDS should operate on both IPv4 and IPv6.

4.1.7 Scalability

IDS should monitor a network consisting of hundreds as well as thousands of

computers. IDS should be scalable and should not require any additional

maintenance when a new host is connected to the network or another host is

disconnected or replaced. Again, the additional maintenance annoys network

administrators.

4.1.8 Easy Maintaining

This requirement is closely connected with scalability. Moreover, we expect

the IDS maintenance will not consume too much time of a system administrator after

its deployment. Technically, all hardware components should be rack-mountable

into a standard 19" rack.

4.1.9 Transparency

The notion of transparency actually comprises two requirements. First, the

IDS should be “invisible” at the IP layer. That means we should not assign any IP to

the IDS (except a management module). This is required to avoid some attacks such

as (distributed) denial of service (DDOS and DOS) where attacker floods the

network with packets destined for the IP address of IDS. Second, the IDS should not

markedly influence network topology and network traffic in any way. Namely,

latency should be preserved and the IDS should not load network links uselessly.

4.1.10 Security Robustness

It is clear that IDSs attract attackers’ attention. The IDS itself should be

invulnerable and robust to security threats. We can prevent some attacks if we meet

the previous requirement of transparency at the IP layer. Next, the IDS integrity

should be intact. For instance, if the IDS is composed of several components, their

46

communication could be invaded or eavesdropped. At all events, the security

administrator must receive true results of the detection.

4.1.11 Anomaly Detection in Encrypted Traffic

Many current IDSs fail in the detection of threats in encrypted network traffic.

Such systems rely on the payload inspection. The proposed IDS should recognize

anomalies even in the encrypted traffic because more and more network services use

encryption.

4.1.12 User-friendly Interface and Well-arranged Visualization

Last, but not least requirement is on the user interface. If the IDS meets all the

previous requirements, but the presentation of the results is not well-arranged, the

IDS is not usable.

On the one hand, the interface should be helpful to the user and should offer all

available views of the data. On the other hand, it should provide support for repetitive

transactions and detailed view. The interface should be personalized by the user.

4.2 Solution

We decided for Network-based IDS (NIDS) to meet the following

requirements:

• Scalability,

• Easy Maintaining,

• Security Robustness.

In contrast to Host-based IDS (HIDS), the deployment of a new host in network does

not demand more effort to monitor the network activity of the new host. There is no

need to install any specialized software on the host. Note that the network may

consist of some specialized hosts (besides common servers or workstations). So, the

HIDS installation is impossible in such a case. Next, NIDSs are passive devices,

“invisible” for the attackers. On the contrary, HIDSs rely on processes that running

47

in the operating system of the host. We also consider the deployment, testing and

possible upgrade of IDS. Generally, it is easier to update one component of NIDS

than many components of HIDS on hosts.

We propose the solution that is consisted of several components and layers. Network

probes are “eyes and ears” of the proposed intrusion detection system. Collectors are

the “memory”, MyNetScope with data sources is the “brain and heart” and

MyNetScope analyst console acts as the “mouth” of the IDS. The “nervous system

and blood circulation” is represented by network links that connect all parts together.

After all, the architecture (Figure 4.1) is similar to the CAMNEP architecture

depicted in Figure 2.1.

Figure 6: The Architecture of the proposed system

48

4.2.1 Network Probes

Probes create the bottom layer of our system. They acquire network traffic and

serve collectors with captured data. This section discusses probe features and probe

deployment in the administered network.

Data acquisition Network probes monitor the link and export captured data in

the Net- Flow format. We decided for this format to meet the requirement on

operating in multigigabit networks. We reject the use of SNMP counters and packet

traces. The former gives coarse-grained data and the latter is very difficult. It is

practically infeasible to capture and store packet at wire speed even with specialized

hardware.

We emphasis we do not rely on NetFlow data that export some (edge) Cisco

routers that may exist in present network. Not only have our measurements revealed

that Cisco’s routers do not export NetFlow correctly in all circumstances. [26]

Obviously, the main task of the router is to route network traffic. We must take into

account that NetFlow export is additional feature.

On the other hand, the NetFlow data from routers can be supplemental data source

for our system.

Next, we rather avoid the packet sampling due to possible distortion of

acquired data.

Our decision is supported by [15]. We recommend to use probes based on COST

(commercial off-the-shelf) computers because of their cost. There are two

alternatives of network interface cards (NIC) used in the probes. The former utilizes

common NIC (such as Intel) and the latter rely on the COMBO technology

developed in the Liberouter project2. The software probes that capture network

traffic by NIC (such as nprobe) is not sufficiently efficient. [20] Hence, we deploy

Flow-

49

Mon, a hardware-accelerated passive network monitoring probe. [10] Generally, the

software probes are satisfactory for small networks, the hardware-accelerated probes

for large, multi-gigabit networks. Both types of probes meet the requirement on

transparency since they are “invisible” at the IP layer. There is no IP address assigned

to the interface performing packet capturing. IPv6 is supported thanks to the use of

NetFlow version 9.

Location A network probe monitors traffic passing through a certain node of

the network. Thus, the location of the network probe determines what is monitored.

This is very important because the proposed system is based on data provided by

network probes. Ideally, each packet that ingresses or egresses the administered

network should pass through the place where the probe is located. We discuss this

with network administrators of the campus network of the Masaryk University. We

identify that the probes should be located “in the neighborhood” of the edge router

considering the network traffic from/to the Internet. Figure 4.2 shows the location of

the main probe. We were choosing between two alternatives.

We suppose that the edge router acts as a firewall too. If we placed the probe

in front of the router/firewall, we would also monitor the traffic that would not enter

the administered network. We chose the second alternative. The main probe is

located in the administered network, behind the router/firewall. This ensures that the

probe “see” only the traffic that passed through the firewall. The firewall usually

implements (a part of) the security policy of the organization.

As discussed above, we will not insert the probe into the network link, but only a

network tap. It is a hardware device which provides a way to access the data flowing

across a computer network3. Thus, we actually delegate the responsibility for the

continuous operating to the tap. If we use the tap that requires power supply, we

50

should connect it to the uninterruptible power supply (UPS). Also we should choose

tap with dual power supply unit in case of failure.

The main probe is capable to capture only the attacks that originate from or

are destined for outside the network. Concerning attacks by insiders, we propose to

deploy other probes

Figure 7: Network probe location

Inside our network, especially in front of/behind the firewalls that protect

particular network segments. Then we can reveal possible malicious activities of

hosts in our network. For instance, Figure 4.3 depicts deployment of one main probe

and three inside the administered network. It can be demanded in campus or

corporate networks. There is one segment consisting of more sensitive servers than

the others or the organization is large enough to monitor network traffic inside the

organization.

51

Figure 8: probes inside the network

Honeypots beside the NetFlow probes, we propose to deploy honeypots to

complement the probes functionality. It is an information system resource whose

value lies in unauthorized or illicit use of that resource. [13] We chose a

lowinteraction honeypot because we want to perform passive rather than active

detection. The output of a honeypot should be a list of hosts (from outside and even

inside the network) that try to communicate with imaginary hosts in the administered

network. Typically, we reserve several unassigned IP addresses (or the whole subnet)

for the honeypot. If it observes a connection attempt to such address, it logs the host

that originated the connection. However, we ought to avoid premature conclusions.

For example, consider an user who type an incorrect IP address, misconfigured host

and so on.

Security: Security robustness is very important for such devices as network

probes. The probe itself is controlled via management interface. We use secure

channel (namely SSH) and the access is granted only from specified IP addresses.

52

We employ identity management system such as RADIUS [31]. It is advantageous

to distributed systems because it eliminates synchronization issues. Last, but not

least, we use NTP4 to synchronize the clocks of computers over a network. Since the

probes timestamp the flows using the host time it is necessary to set the precise time.

Maintenance and Management Generally, the probes are easy to maintain

devices. If we place them in network and set up, they will work and fulfill their task.

However, if they do not send any data to the collector, we cannot determine whether

the monitored link or the probe fails. Hence, we employ NETCONF Configuration

Protocol [36] over SSH to monitor a probe status.

4.2.2 Collectors

A NetFlow collector is responsible for correct reception and storing NetFlow

data that are exported by network probes. To prevent reinventing the wheel, we use

existing tools and software that is well tested and wide-spread. In case of NetFlow

collectors, we rely on nfdump and NfSen toolset [28]. Our collectors receive and

store NetFlow records but also perform some preprocessing tasks such as

periodically execution of scripts that monitor policy violation. Collectors comply

with requirements described above as well as other parts of the proposed IDS.

Security To meet security requirements, we specify IP addresses of probes that

are authorized to send the NetFlow data to the particular collector. Notice that the

collector itself does not restrict the reception of NetFlow records. It can be

considered to be a security threat since the NetFlow records are transmitted in UDP

packets that can be easily forged. If we do not want to transmit NetFlow records via

the same network, we can connect the collectors directly to the probes through local

network and thus considerably intensify the security. In addition, this could lighten

the loaded network links.

53

Long-term data storage Although NetFlow records are already aggregated (in

terms of network flows), they occupy relatively a lot of disk space. For example, the

records that cover one month of network traffic of large campus network occupy

about 240 GB of disk space5. If we do not deploy more probes, we could utilize only

one collector. Nevertheless, long-term data storage requires enough space on disk

drives.

4.2.3 MyNetScope and Data Sources

In this section, we describe the core of our intrusion detection system. This

layer requires data from collectors and other sources for its operation.

MyNetScope We employ MyNetScope platform that was briefly described in

Section 3.3.

It is not a standalone application, it is designed as client/server architecture. The

server reads NetFlow records from collectors, performs some preprocessing tasks on

the flows and replies to analyst’s queries that are submitted by client application

(analyst console). Again, the entire communication between all parts is encrypted.

We use SSH tunnels.

CAMNEP MyNetScope itself does not perform intrusion detection. It is very

useful visualization tool that meets the requirements in Section 4.1.12. Its power is

in integration of external data sources. We decided to deploy part of the CAMNEP

project (described and evaluated in Section 2.6.5) as the “brain” of our intrusion

detection system. Thus, we can meet following requirements:

• Accuracy,

• Detection of Novel Threats,

• Operating in a High-speed Networks,

• Early Detection,

54

• Anomaly Detection in Encrypted Traffic.

We use mainly the CAMNEP Cooperative Threat Detection Layer that combines

modern intrusion detection methods. In summary, we get better accuracy than we

would deploy particular anomaly detection methods separately. The methods are

able to detect novel threats and anomalies in case of the security anomaly is captured

as network traffic anomaly too.

For instance, a worm spreading or denial of service attack is “visible” in network

flows. On the contrary, single packet that causes buffer overflow on a host computer

does not represent the network traffic anomaly. Next, the methods were designed for

high-speed networks from the very beginning or they were modified to meet this

requirement. The detection is performed in 5-minute time windows. This is a

reasonable interval due to flow aggregation, commonly used in connection with

NetFlow. Finally, since the methods work purely with packet headers, the anomaly

detection is possible even in case of the encrypted payload.

CAMNEP Detection Layer computes for each network flow its trustfulness.

This value is then imparted to MyNetScope and the user can view the suspicious

flows and query the MyNetScope for other relevant information.

Other data sources Apart from CAMNEP, we also utilize other data sources

such as DNS server, who is service or specific scripts that periodically check for

policy violation. Their output is then included in MyNetScope too. These scripts are

discussed in the next chapter.

4.3 Summary

We identified and explained twelve fundamental requirements on an intrusion

detection system for large networks. Then we design a distributed system that meet

these requirements.

The system consists of several layers and components:

55

• NetFlow probes and honeypots,

• Collectors,

• CAMNEP and other data sources, MyNetScope platform: server and client

(analyst console).

CHAPTER V

DEVOLOPMENT OF IDS

We have already begun with system deployment and testing in the large

campus network. This chapter summarizes our present experience in using the

designed system. First, we describe in detail the system deployment status. We

structure the description according to Section 4.2. Then we outline a use case and

compare a security analysis performed with the help of the designed system with the

classic approach.

5.1 Deployment status

5.1.1 Network Probes

First of all, we started with the probe deployment and testing. As discussed in

Section 4.2.1, we considered various probe locations. We were discussing with

network administrators and we were testing selected locations. Finally, we decided

for the main probe located behind the edge router/firewall and the other probes

located in front of the firewall that protects selected subnets (typically faculty

subnets). It arises from the organization structure of the university. Institute of

Computer Science (ICS) is responsible for the development of information and

communication technologies at the university. Although the faculties and other

departments are to a certain degree autonomous units, they must adhere to rules1 and

cooperate with ICS. Therefore, it is useful that such an arrangement of probes can

capture a policy violation inside the network. The main probe is temporarily

connected to the SPAN port of the edge router (Cisco Catalyst 7609). We chose

56

hardware-accelerated FlowMon probe with 10 Gigabit Ethernet interface. Since we

use the SPAN port2, we have to enable packet filtering at the probe.

Thus, only packets from/to the Masaryk University are acquired by the

FlowMon probe.

We were also testing traffic acquisition of all packets from SPAN port, but the

router serves other international links that are heavy loaded. It required several times

more disk space on the collector. In addition, the probe cannot determine the correct

AS3 because the traffic contains packets from all interfaces of the router. Now, the

probe processes every weekday about 6 TB of data (1.2 Gbps spikes) in 200 million

of flows (4 000 flows per second spikes).

We have recently deployed the second probe. It is located in front of two

routers that connect the Faculty of Informatics with the university backbone. There

are two network taps between the backbone routers and the routers of the Faculty.

The probe is connected to the taps. We employ a four-port software probe FlowMon

there. According to our measurement, we decided for non-accelerated version of the

probe. Although, we have not yet acquired any data from this probe, we expect the

link usage will be lower than in case of the main probe. Both probes export data in

NetFlow version 9 format.

A honeypot deployment is being prepared. It is a small daemon that creates

virtual hosts on a network. The hosts can be configured to run arbitrary services, and

their personality can be adapted so that they appear to be running certain operating

systems. Honeyed enables a single host to claim multiple addresses.4 Network

administrators have already assigned the address space for honeypots. We dispose

of 254 IPv4 addresses for a honeypot operation. Although the address space is

unused, we can observe numerous requests for the connection originated outside the

administered network. So we expect the honeypot will help us with security analysis.

57

We also plan to assign some IPv6 addresses to the honeypot.

In this phase of the deployment, we decided to assign public IP addresses to

the probe management interfaces due to an easier access and maintenance.

5.1.2 Collectors

We still use only one PC5 equipped with 1TB hard drive. We estimate that

this is sufficient to store NetFlow record from the main probe for about 4 months.

We will consider the usage of some data thinning technique, compression or other

collectors dedicated to each probe.

Results obtained from the data acquisition by the second probe can answer this

question. Nevertheless, we have to cope with the trade-off between the long-term

data storage and the completeness of the records.

The collector is also utilized for preprocessing. There is the crone daemon6

periodically executing scripts that check the policy violation. The scripts are

described in detail in the next subsection. They usually perform tasks that load the

collector and their evaluation last some time (typically a few minutes). It is not

surprising, because they typically process all day data (up to 17 GB). So, the

scheduling and planning has become more important in case of many scripts.

Similarly to the probes, the collector is protected by firewall and communicates via

assigned public IP address.

5.1.3 MyNetScope and Data Sources

We have designed the use of the CAMNEP project as the main data source.

The probes and the collector is prepared to CAMNEP deployment in the next phase.

Now, we are focused on MyNetScope. We are responsible for MyNetScope analyst

console testing and development of the scripts, the additional data sources. The

MyNetScope analyst console is still under development and in alpha testing phase.

58

We are currently reporting bugs and suggest improvements of the system to

MyNetScope developers. We have already deployed two scripts that check the

selected rules of the security policy.

These scripts are in routine operation and their output helps with a security

analysis. The scripts are periodically executed every night7 on the collector and

provide output in two formats. First, plain text files at the web server that is running

on the collector are useful for network administrator. Second, files with rules for

MyNetScope platform access these external data sources in MyNetScope analyst

console. According to the rules, the nodes (hosts) that violate the security policy are

“colorized”. In addition, we plan that user will be able to filter the hosts that violate

the particular policy.

Reverse DNS entry policy the first script checks if all hosts (IPv4 addresses) from

the

Masaryk University network that were communicating previous day have a valid

DNS reverse entry. Every Internet-reachable host should have a name. Many

services available on the Internet will not talk to you if you are not correctly

registered in the DNS. For every address, there should be a matching PTR record in

the in-addr.arpa domain. [30] Examples of effects of missing reverse mapping are

described in [7].

The script utilizes nfdump tool. It filters all communicating hosts from the

Masaryk University network and save the output to a temporary text file. Next, all

IP addresses are passed as a parameter to a DNS lookup utility host8. If the lookup

fails, the relevant IP address is logged. Network administrators can then inform

appropriate administrators who are responsible for such hosts. In spite of the fact that

the script execution time differs, it takes approximately up to 10 minutes in a

weekday.

59

SMTP traffic policy the second script checks for anomalies in the SMTP traffic

on TCP port 25. It is not permitted to send e-mails to SMTP servers outside the

Masaryk University network excepting several well-known servers. We also monitor

which hosts in the administered network behave as SMTP servers due to possible

participation in spam campaigns.

The script logs all host inside the network that were communicating via TCP port 25

excepted replies to port scanning attempts. We take into account only the flows that

contain packets with TCP flags SYN, ACK and FIN. That means we are interested

in TCP connections where the 3-way and 4-way handshake occurred. The former is

used for the connection establishment and the latter for its termination.

Again, we use nfdump with a relevant filter to obtain interesting hosts. The script

execution takes about 5 minutes. We point out it processes all-day data.

5.2 Use Case

In spite of the fact all parts of the system have not been deployed yet, we can

use some its components for security analyses of the network, namely the main

NetFlow probe and the NetFlow collector. We mention the system use case in this

section. In April 2008, the Masaryk University received a warning on a phishing

scam from Security Incident Response Team (SIRT) of Internet Identity9. Phishing

is an attempt to criminally and fraudulently acquire sensitive information, such as

usernames, passwords and credit card details, by masquerading as a trustworthy

entity in an electronic communication10. Network administrators had confirmed

this. Consequently, they disconnected the host from the network and informed us.

We had to investigate this security incident in three ways:

1. To validate the findings of SIRT,

2. To determine whether the phishing attack was successful,

3. To find out who was responsible for the attack.

60

Apart from information provided by a host administrator, we were inspected

NetFlow records. First of all, we identified a host profile. We set a filter for the

destination IP address of the host and filtered out all TCP flows that contained only

SYN TCP flag. We found out the host was used via secure shell. The administrator

confirmed that the host had been reserved for development and the presence of the

web server was very suspicious. They also reported that the attacker had changed the

super user password. Second, we validated that the host acted as a web server: it had

replied to requests on TCP port 80 that is reserved for web traffic. In addition, we

could exactly determine when the server had replied for the first time. In total, we

observed 54 distinct hosts (IP addresses) that communicated with the attacked host.

Hence, we fulfilled the first and the second point.

Finally, we were investigating the origin of the forged website. We supposed

that the host had been exposed to a SSH brute force attack. Consequently, we

inspected the network traffic on TCP port 22 that is reserved for SSH before the web

server had been set up. We found an extreme growth of number of flows in short

time. This could point out just SSH brute force attack. Since each attempt to log in

is performed on a new port, it is considered to be a new flow in terms of NetFlow.

We identified a host that was responsible for too many flows. So we fulfilled even

the third point and closed the investigation of the security incident. We enclose a

CD-ROM containing all relevant data to this incident (see Appendix B for the CD

contents).

After some time, the administrator provided us a disk image of the entire drive

of the attacked host. We found in log files some entries that confirmed our findings.

Of course, we could investigate the incident without our system. We could only

inspect the system log files. However, the logs or the whole host are not always

available. For instance, consider the advanced attacker who deletes the log files. We

61

emphasis that we used only two (lower) layer of the designed system: FlowMon

probe and NfSen collector. After the CAMNEP deployment the system will

automatically determine a list of hosts (flows) with low trustfulness. In addition,

MyNetScope platform visualizes the traffic as a graph, a natural picture of a network

traffic.

5.3 Summary

We described the status of the development of the designed system. We were

focused on our work: system component testing, development and integration of

other data sources into the whole system (e. g., scripts that check the organization

security policy). Although some parts of the system are still under development, we

could use it to investigate the security incident with satisfactory results.

62

CONCLUSION

The goal of this research was to design a system that simplifies a security

analysis of large networks.

First of all, we studied the state of the art in intrusion detection and prevention. We

focused on modern methods that operate at the IP layer since they are efficient in

high-speed gigabit networks. On the contrary, stateful protocol analysis or

signaturebased detection performed at higher levels of the TCP/IP model are both

resource demanding tasks. Hence, some statistical methods do not inspect the whole

packet but only the packet headers. They operate on NetFlow data acquired from

routers

(typically from Cisco devices) or the packet traces that are later “converted” into

network flows. Although these methods work only with the packet headers, they are

able to detect some anomalies in the network behaviour. Next, we identified and

explained essential requirements on the intrusion detection system.

Then we designed a distributed system that meets the requirements. The

system consists of several various components. We combined some existing

subsystems and have been developing an integration platform. We employed

hardware-accelerated NetFlow probes, honeypots, NetFlow collectors, MyNetScope

platform and other data sources such as DNS, who is and the output of other scripts

that (pre)process acquired data. We note there are about fifteen people involved in

this long-term and dynamic project.

We contributed to the system development by testing the particular

components and examples of scripts that check some organization’s security rules.

These scripts are in routine operation and we can easily validate the adherence to the

rules. We also tested a part of the system on the investigation of a security incident

that was reported by a third-party. As a result, we identified a host that had attacked

63

computer from the Masaryk University. The host changed the super user password

and ran a forged website to acquire usernames and passwords of clients of a bank.

Finally, we suggest future work could be aimed at developing a new detection

method based on new directions in data acquisition. Namely, the use of IPFIX format

would “access” interesting feature in the packet payload for the anomaly-based

detection methods. Currently, we are bounded by 5-tuple of NetFlow format. Also a

closer integration of other data sources such as honeypots would be valuable.

64

REFERENCES
[1] Northcutt, S. and Frederick, K. and Winters, S. and Zeltser, L. and Ritchey, R.: Inside

Network Perimeter Security: The Definitive Guide to Firewalls, VPNs, Routers, and

Intrusion Detection Systems, New Rider’s Publishing, 2003, 978-0735712324. 2.1, 2.4

[2] Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time, 1999,

<http://www.icir.org/vern/papers/bro-CN99.html> . 2.7

[3] Brutlag, J.: Aberrant behaviour Detection in Time Series for Network Monitoring,

2000, <http://www.usenix.org/events/lisa00/full_papers/brutlag/ brutlag_html/index.html> .

2.6.1

[4] Rehák,M. and Peˇchoucˇek,M. and Bartoš, K. and Grill,M. and Cˇ eleda, P. and Krmícˇek, V.:

CAMNEP: An intrusion detection system for high-speed networks, 2008, <http:

//www.nii.ac.jp/pi/n5/5_65.pdf> . 2.6.5, 2.1, 2.6.5

[5] Rehák,M. and Peˇchoucˇek,M. and Cˇ eleda, P. and Krmícˇek, V. and Novotný, J. andMina ˇrík,

P.: CAMNEP: Agent-Based Network Intrusion Detection System (Short Paper), 2008.

3.3

[6] Lau, S.: The Spinning Cube of Potential Doom, 2004. 3.2

[7] Senie, D. and Sullivan, A.: Considerations for the use of DNS Reverse Mapping , 2008,

<http://www.ietf.org/internet-drafts/ draft-ietf-dnsop-reverse-mapping-considerations-06.txt>

. 5.1.3

[8] Graham, I.: Achieving Zero-loss Multi-gigabit IDS Results from Testing Snort on Endace

Accelerated Multi-CPU Platforms, 2006, <http://www.touchbriefings.

com/pdf/2259/graham.pdf> . 2.4

[9] Oberheide, J. and Goff, M. and Karir, M.: Flamingo: Visualizing Internet Traffic, 2006.

3.2

[10] Cˇ eleda, P. and Kovácˇik, M. and Konírˇ, T. and Krmícˇek, V. and Žádník, M.: CESNET

technical report number 31/2006: FlowMon Probe, 2006, <http://www.cesnet.

cz/doc/techzpravy/2006/flowmon-probe/flowmon-probe.pdf> . 4.2.1

[11] Malagon, C. and Molina, M. and Schuurman, J.: Deliverable DJ2.2.4: Findings of the

Advanced Anomaly Detection Pilot, 6. 9. 2007, <http://www.geant2. net/upload/pdf/GN2-07-

218v2-DJ2-2-4_Findings_of_the_Advanced_

Anomaly_Detetion_Pilot.pdf> . 2.6.1

